
Contents

1 Goals 2

2 Processes 3
2.1 Creating Processes . 3
2.2 Overwriting Process Images . 4
2.3 Waiting for Processes . 5
2.4 Linux Process Scheduling . 6

3 Concurrency 8
3.1 Race Conditions . 8
3.2 Mutexes . 10
3.3 Global Semaphores . 10

4 Memory 11
4.1 Shared Memory . 11
4.2 CPU Affinity . 12
4.3 Process Priority . 13

5 File Systems 14
5.1 Core Operations . 14
5.2 Links . 17
5.3 Directories . 17

1

COMP2007 Labs: Processes, Process Scheduling, Concurrency

and Operating System APIs

Dr. Geert De Maere
Dr. Alexander Turner

School of Computer Science
University of Nottingham

1 Goals

The lab sessions focus on the use of operating systems APIs (specifically, the POSIX APIs in
Linux) for process management, concurrency, shared memory, and file management.

How to do the Labs

There are several tasks for you to undertake. The pace at which you should attempt these tasks is
generally up to you to decide. However, we would expect 2-3 tasks to be completed each week.

The labs are designed as a way of reinforcing the knowledge and principles taught in lectures, and
additionally, as coursework preparation (although it is noted that the labs primarily focus on processes,
and the coursework on threads). Topics discussed here may form part of the exam.

Writing code

Support for programming on the school servers, i.e. coding environments, is typically limited to emacs
or vim. You are more than welcome to use any of your own environments to develop your code, and
compile it on the Linux servers using gcc compiler. Note that the H: drive on the school machines is
shared with the server. That is, all code written and stored on the H: drive is accessible on the server
(where it can be compiled and executed).

Background Information

� An additional tutorial on compiling source code in Linux using the GNU C-compiler can be
found on the Moodle page.

� Additional information on Linux programming is available in the “Advanced Linux Program-
ming” book (which is freely available online), amongst many others.

� Additional background information on process scheduling in Linux can be found online, includ-
ing in the tutorial listed here: http://www.ibm.com/developerworks/library/l-completely-fair-
scheduler.

2

http://www.ibm.com/developerworks/library/l-completely-fair-scheduler
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler

2 Processes

2.1 Creating Processes

There are several ways to create new processes in Linux, including fork() and clone(). fork()
is the most commonly known (since it was also present in Unix) and the easiest approach. However,
it offers less flexibility than clone(), which enables to specify in detail which resources are cloned
for the child process. When fork() is called by the parent process, it executes a system call to
ask a service from the operating system, i.e., to create a new process, execute it, and carry out all
internal administration that is required for that new process (e.g. creating the process control block
and adding it to the process table). The fork() system call makes an exact copy of the parent
process (that makes the call). After creation, the parent and child processes both continue with the
first instruction immediately following the fork() call. Your code can distinguish between the parent
and child process based on the value of the PID variable, which 0 in case of the child. If, for some
reason, the fork() call could not be carried out successfully, the PID returned to the parent process
will be -1. The following example illustrates the use of fork(). More information on fork can be
found here: http://linux.die.net/man/2/fork.

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
pid_t pid = 0;
pid = fork();
if(pid < 0) {
printf("Could not create process\n"); exit(1);

} else if(pid == 0) {
sleep(1);
printf("Hello from the child process\n");

} else if(pid > 0) {
printf("Hello from the parent process\n");

}
printf("This code will be executed by both the child and parent\n");

}

Task 1

Using the same principles as above, write a program in which the parent process creates a pre-specified
number of child processes (e.g., using a fork in a loop). The number can be specified either on the
command line or as a constant in your code (e.g., using NUMBER_OF_PROCESSES). Make sure that
you start with a relatively small number processes and assign every child process a unique index, e.g.,
between 1 and NUMBER_OF_PROCESSES (you will need this index later in these lab sessions). Add
a printf statement to the child process that displays this ID together with the child’s PID. The
latter can be obtained using the getpid() function. Verify that your implementation is working as
expected.

You may notice that more child processes are created than the number you specified (hence, why we
asked you to start with a small number of processes to minimise the load on the school’s servers).
If this is the case, think of a way to resolve this (i.e., to create the exact number of processes) and
implement it. You can increase the number of processes once you are confident that your code is

3

http://linux.die.net/man/2/fork

working properly, however, please do not go above 16.

Sample Output

$./task1
$ Hello from the child 0 with pid 18038
Hello from the child 2 with pid 18041
Hello from the child 1 with pid 18040
Hello from the child 4 with pid 18043
Hello from the child 3 with pid 18042

Run your program multiple times and analyse the output. Why do the child processes print their
output in different orders? Why don’t you see the command prompt ($) printed when all the child
processes have finished?

2.2 Overwriting Process Images

The fork() system call creates an exact copy of the parent process. The memory image of the
child process can be overwritten using one of the exec() system calls, as illustrated below. More
information on the different exec() system calls can be found here: http://linux.die.net/man/3/exec.

#include <stdio.h>
#include <unistd.h>

int main() {
int status;
pid_t pid = fork();
if(pid == -1) {
printf("fork() error\n");

} else if(pid == 0) {
execl("/bin/ps", "ps", "l", 0);
printf("This code should not run");

}
}

The child process in the program above executes the ps -l command. The output will show quite
a few different fields. Have a look at the meaning of the individual entries in the manual pages (e.g.
type man ps on the command line) or on the web. Can you find the different process states and the
process priorities discussed in the lectures in the output?

Task 2

Based on the example code above, modify your code from the previous task to create an additional
child process for which you overwrite the “memory image” to run ps -l. The output should show
all the child processes that you have created, their process state, and their priorities. What happens
if you remove the sleep(1) instruction of your code from task 1? Why?

Sample Output

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
1 28134 28133 24653 pts/8 24653 S 5248 0:00 ./a.out XDG_SESSION_ID=2291
HOSTNAME=severn.cs.nott.ac.uk SELINUX_ROLE_REQUESTED= TERM=xterm SHELL

=/bin/bash HISTSIZE=1000 SSH_CLIENT=128.243.18.129 65413 22
SELINUX_USE_CURRENT_RANGE=

4

http://linux.die.net/man/3/exec

QTDIR=/usr/lib64/qt-3.3 QTINC=/usr/lib64/qt-3.3/include SSH_TTY=/dev/pts
/8 QT_GRAPHICSSYSTEM_CHECKED=1 USER=pszgd

1 28135 28133 24653 pts/8 24653 S 5248 0:00 ./a.out XDG_SESSION_ID=2291
HOSTNAME=severn.cs.nott.ac.uk SELINUX_ROLE_REQUESTED= TERM=xterm SHELL

=/bin/bash HISTSIZE=1000 SSH_CLIENT=128.243.18.129 65413 22
SELINUX_USE_CURRENT_RANGE=

QTDIR=/usr/lib64/qt-3.3 QTINC=/usr/lib64/qt-3.3/include SSH_TTY=/dev/pts
/8 QT_GRAPHICSSYSTEM_CHECKED=1 USER=pszgd

...
Hello from the child 1 with pid 28135
Hello from the child 0 with pid 28134
Hello from the child 2 with pid 28136

2.3 Waiting for Processes

After creation, child processes usually get a life of their own. On some occasions, you would want the
parent process to wait for the child until it has finished (this is often also required for threads, as in
the coursework). I.e., the parent process must suspend its execution until the child process(es) have
finished. This can be achieved by making the parent process execute a waitpid system call that
takes the child’s process identifier as one of the parameters. This is illustrated below.

#include <stdio.h>
#include <stdlib.h>
#define NUMBER_OF_PROCESSES 4

int main() {
int i, status;
pid_t pid;
printf("Hello from the parent process with PID %d\n", getpid());
pid = fork();
if(pid < 0) {
printf("fork error\n");

} else if(pid == 0) {
sleep(1);
printf("Hello from the child process with PID %d\n", getpid());
return;

}
waitpid(pid, &status, WUNTRACED);
printf("Child process has finished\n");

}

Task 3

Modify your code above to ensure that the parent process (and only the parent process) waits for
all child processes to finish before it continues. Note that all child processes must be able to run in
parallel. When you have implemented this, the command prompt ($) should only display after all
processes have finished, including the child processes.

Sample Output

$./a.out
Hello from the parent process

5

Hello from the parent process
Hello from the parent process
Hello from the parent process
Hello from the child 0 with pid 20109
Hello from the child 1 with pid 20110
Hello from the child 2 with pid 20111
Hello from the child 3 with pid 20112
Bye from the parent!
$

2.4 Linux Process Scheduling

Linux is a multi-tasking operating system. This means that, in practice, multiple processes run con-
currently (by quickly alternating) or in parallel on multiple CPUs/cores. The operating system is
responsible for managing these processes. This includes creating, destroying, context switching, and
scheduling them, and the management of the execution traces (threads) and the resources they use.
The processes you create during the lab sessions will contain only one thread. The reason for this
is that the school’s server offers more possibilities to influence the scheduling of processes than the
scheduling of threads.

Every process in Linux is characterised by a unique and non-negative integer, called the process
identifier (PID). The PID is used as an index into the process table where the associated process
control block is stored. Note that the process control block in “Linux terminology” is called the task
control block and that processes themselves are called tasks. Only a finite number of processes can
exist simultaneously within the same system, and once the PIDs have reached their maximum value,
they are wrapped around. PID 1 is “reserved” for the init process (the parent of all processes in
Linux).

As stated, the first process started on a Linux system is the init process. All other processes are
created by the init process using system calls (like the ones you used above). The process scheduler
is responsible for determining the order as well as the CPU/core on which the processes will run.
In determining this order, the CPU scheduler takes several objectives and process characteristics into
account (e.g., CPU bound process, I/O bound, priority, CPU affinity). The process scheduler also aims
to get the best possible value for several objectives, including throughput, utilisation, fairness, and
responsiveness. Linux process schedulers have evolved considerably over different versions of Linux,
with each approach having its own strengths and weaknesses.

Logging Process Times

Like most programming languages, C can use the “system time”. This time can be used to check at
what times/intervals the processes you created are using the CPU, e.g. , relative to the start time of
the parent process (called the “base time” below). The functions/data structures that you can use on
Linux are illustrated below. Note that the returned time value contains two values: the number of
seconds and the number of microseconds. Hence, to retrieve the number of milliseconds (as requested
below), you will have to manipulate the times.

#include <sys/time.h>
#include <stdio.h>

long int getDifferenceInMilliSeconds(struct timeval start, struct
timeval end);

long int getDifferenceInMicroSeconds(struct timeval start, struct
timeval end);

6

int main() {
int i;
struct timeval startTime, currentTime;
gettimeofday(&startTime, NULL);
sleep(1);
gettimeofday(¤tTime,NULL);
printf("Difference in milli-seconds %d\n",
getDifferenceInMilliSeconds(startTime, currentTime));

printf("Difference in micro-seconds %d\n",
getDifferenceInMicroSeconds(startTime, currentTime));

}

long int getDifferenceInMilliSeconds(struct timeval start, struct
timeval end) {

int seconds = end.tv_sec - start.tv_sec;
int useconds = end.tv_usec - start.tv_usec;
int mtime = (seconds * 1000 + useconds / 1000.0);
return mtime;

}

long int getDifferenceInMicroSeconds(struct timeval start, struct
timeval end) {

int seconds = end.tv_sec - start.tv_sec;
int useconds = end.tv_usec - start.tv_usec;
int mtime = (seconds * 1000000 + useconds);
return mtime;

}

Task 4

Extend the code developed in task 3 to estimate the time that it takes to fork a process, combined with
the time it takes between forking the process and running the process (i.e., the response time). Note
that these are only approximations since the parent process can be, for example, suspended between
instructions. However, it should give you a reasonable estimate.

Sample output:

Hello from the child 0 with pid 8109 at time 93
Hello from the child 1 with pid 8110 at time 101
Hello from the child 2 with pid 8111 at time 125
Hello from the child 3 with pid 8112 at time 197

Task 5

Modify the code in task 4 to track the times at which the child processes are running, relative to the
“base time” (the time at which the parent process starts). In other words, at the start of your parent
process, you log what the current time is, and pass this timestamp on to all child processes who use
it as the “base time” for logging their CPU activity. In each of the child processes, you retrieve the
current time and take the difference between the current time and the start time of the parent process.

There are several steps in which you can achieve this (you can start with the last one if you feel
confident you can do it):

7

1. Define an infinite loop in the processes that prints the process index and time (relative to the
base time) at which the process was running in the following format:

timevalue, process index
timevalue, process index
timevalue, process index
...

You will probably see a random pattern of IDs on the screen, however, when redirecting the
output to a file and visualising it in a graph, patterns should start to emerge. A few warnings:

� Make sure that you kill all child processes that you have created from the command
line using, killall -u XXX, in which XXX is replaced by your own username (this will
kill ALL your processes, including anything else that you have running).

� Note that, when re-directing output to a file, the file size will increase very rapidly!
Make sure that you don’t leave your code running for too long, and that you delete the
files afterwards! Or even better, run your code and redirect only the first 10000
lines to a file using ./task5a | head -n 10000 > output.csv.

� Generate a visualisation that shows when processes are running (e.g. using Excel)

2. Use a predefined duration for your experiments, i.e., make sure that the child processes ter-
minate automatically when the maximum time (relative to the parent process) is exceeded
(MAX_EXPERIMENT_DURATION set in milliseconds).

3. Replace the messages that you print on the screen with an array in which you log for each process
the times that they were running. To avoid generating too much data (which becomes difficult
to analyse), make sure that the child processes only run for a pre-specified and configurable
amount of time and work with a granularity of milliseconds when logging at what times the child
processes are running. The child process writes out its data before it finishes.

Try running your code with different numbers of child processes, e.g., 4 and 16, and assess what
the impact is on the process behaviour and the scheduling of the processes. Note that your
output may sometimes not be entirely what you expected. Occasionally, you will find that the
output for multiple processes is printed out randomly and on other occasions you may notice that
formatting is not entirely what you would hope for. This is due to multiple processes writing to
the standard output at the same time. There are two ways out of this:

� Synchronise the writing (e.g. using global semaphores) by allowing only one process to write
to the standard output at any one time.

� The data structure to log the process times is stored in shared memory, and the parent
process writes the information out once all child processes have finished.

You will extend your solution above to use both approaches in Sections 3 and 4 respectively.

3 Concurrency

3.1 Race Conditions

When scheduling work to be done on a CPU, it is essential that CPU cycles are not wasted, and that
the work done is consistent. That is, it must execute in the same way under varying conditions such
as changes in CPU load etc.

8

To illustrate this we can think about a bank account. A bank account has some important features,
one of them being the balance. The balance specifies how much money is in the account, and any
modifications to this amount must be mathematically correct. One of the difficulties here is that
multiple banks and merchants could request access to the funds at very close times. If these requests
are not handled correctly, errors are possible, and if not handled concurrently, the system could be too
slow.

A typical error in this situation can be described as follows. Say there is £10 in my bank account with
no overdraft allowed, and I am currently buying two books, one on operating systems costing £8 and
one on cats costing £5. I do not know my bank balance and attempt to buy both from two different
online retailers at the same time. Say the first online retailer looks at my bank balance and sees £10.
This means I have enough money for the operating systems book and can purchase it. However, before
the money is taken out of my account, the second online retailer tries to view my bank balance to see
if I can afford the book, and because no money has been taken out of my bank account, that retailer
too thinks I have the money to pay for it. And because I only have enough money for one book – one
retailer will not be able to get their money, or worse, the bank account could go negative when it is
not supposed to. This is the first issue to address – ensuring concurrent transactions do not void the
integrity of the bank account. For now, we are not too worried about speed.

Task 6

The goal of task 6 is to illustrate how errors can occur when multiple threads are trying to access a
shared resource. Create a new source file, for which the skeleton code can be seen here:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

void withdrawFunds();
void addFunds();

int balance = 100;

pthread_t pWithdrawFunds;

int main() {
pthread_create((&pWithdrawFunds), NULL, withdrawFunds, NULL);

}

void * withdrawFunds(void * p) {
}

void * addFunds(void * p) {
}

We have two methods here – the withdrawFundsmethod and the addFundsmethod. The withdraw
Funds checks that balance is greater or equal to £10, and if so, it subtracts £10 from the balance. The
addFunds method increases the balance by £1 at a time. Each of the methods are to run indefinitely
unless the balance goes negative. Your code should use multiple threads – and in the skeleton code you
can see that a single thread has already been created. Two threads should run the withdrawFunds
method, and one the addFunds method. Note that you must add the option -pthread on the

9

command line when compiling your code.

Your code should contain the conditional if(balance < 0) which should - in theory - never be
triggered, because we don’t let the balance decrement unless it is equal to or greater than £10 (as per
the if statement). But this clause will be triggered. How does this happen here?

3.2 Mutexes

The previous tasks showed that the balance can go negative, an outcome that we do not want. What
is the best way to correct this? A mutex will work well here. A mutex is essentially a flag which allows
for the – safely – sharing a resource between multiple threads.

� Create a mutex using pthread_mutex_t. Make sure to include #include <pthread.h>
and to add -pthread when you compile your code on the command line.

� A mutex enables to lock a section of code, so that only the current thread can access it, using
pthread_mutex_lock(). It can be unlocked using pthread_mutex_unlock().

� Mutex operations are atomic and will ensure that statements that are in between the lock and
unlock can only be accessed by a single thread at any given time (if placed appropriately).

Task 7

Modify your code from the previous task to use a mutex to ensure that the two withdrawFunds
threads cannot access the balance variable at the same time. This should prevent the balance going
below 0.

3.3 Global Semaphores

This part builds upon the final task in Section 2.4. One could use global semaphores that are shared
between processes to synchronise the writing of the child processes and allow only one process to write
to the standard output at any point in time. This will avoid lines occasionally being printed through
one another when the code is not synchronised. A full overview on how to use semaphores in Linux can
be obtained by typing man sem_overview on the command line. Like shared memory (see Section
4), there are a number of steps that one has to go through to declare/access global semaphores:

� Create a new named semaphore by calling sem_open and specifying the semaphore’s name in
the format “/semaphore_name” (make this unique)

� Use the semaphore by calling the functions sem_post and sem_wait

� Close the semaphore once the process no longer needs it by calling sem_close

� Deleting the semaphore from the system by calling sem_unlink. Please do not forget to call
this function since the semaphore may otherwise continue to exist in the OS, and the number of
semaphores that are available is limited!

Note that calling sem_open will result in a named semaphore. This name can be shared between
different processes, who can then “open” the semaphore (i.e. by retrieving a reference to the semaphore
from the operating system) and use it to synchronise shared resources. A detailed description of how
to use the different functions listed above can be found in the manual pages, e.g. by typing man
sem_open.

The alternative to named semaphores are unnamed or local semaphores. These are used between
threads and declared in a region of memory that is shared between them (e.g. by declaring them as
global variables for the process). You will use unnamed semaphores for your coursework.

10

Task 8

Modify your code from task 5 such that individual child processes print out their timings. Use named
semaphores to make sure that only one child process prints to the standard output at any given point
in time.

4 Memory

4.1 Shared Memory

Shared memory is a fast form of inter-process communication in which multiple processes write to
the same (physical) memory, and hence, can share information with one another. Considering that
multiple processes access the same memory, synchronisation must be considered and may have to be
applied. Note that this is only required if multiple processes can access the exact same memory location
simultaneously. Since shared memory is similar to accessing local memory, there is no performance
penalty (unless synchronisation is required of course). Whilst the physical memory that is shared is the
same (i.e. the frames), different process may have the physical memory segment attached to different
logical addresses in their own address space (i.e. the pages). Setting up shared memory consists of the
following steps:

� Open a shared memory object using shm_open, specifying the name, optional flags, and the
directory permissions, respectively.

� Configure the size of the shared memory object using ftruncate, specifying the file descriptor,
followed by size of the object.

� Map the shared memory object in to the processes’ logical address space using mmap, specifying
the address location at which to attach the memory, the size, the read/write protection, optional
flags, the file descriptor for the shared object, and the offset (usually 0). Best practice is to
specify NULL for the address location, thereby allowing Linux to decide itself where to attach
the object into the logical address space.

� Unlinking the shared memory segment using shm_unlink, specifying at least the name of the
object.

Additional information on any of the above functions can be found online, or in the manual pages
using, e.g. man shm_open. Note that you will have to specify -lrt on the command line to link
in the appropriate library when compiling with gcc. An example of how to use shared memory in a
single process is given below.

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

#define SIZE_OF_MEMORY sizeof(int)
#define SHARED_MEMORY_NAME "GDM123456"

int main() {
int shm_fd = shm_open(SHARED_MEMORY_NAME, O_RDWR | O_CREAT, 0666);
if(shm_fd == -1) {

11

printf("failed to open shared memory\n");
exit(1);

}
if(ftruncate(shm_fd, SIZE_OF_MEMORY) == -1)
printf("failed to set size of memory\n");

int * i_ptr = mmap(NULL, SIZE_OF_MEMORY, PROT_READ | PROT_WRITE,
MAP_SHARED, shm_fd, 0);

*i_ptr = 1000;

if (munmap(i_ptr, SIZE_OF_MEMORY) == -1)
perror("Error un-mmapping the file");

shm_unlink(SHARED_MEMORY_NAME);
shmctl(shm_fd, IPC_RMID, 0);

}

Task 9

Modify your code from task 5 to use shared memory. Make sure that you choose your data structure
such that you do not have to enforce mutual exclusion/synchronisation, e.g. by giving every process
a dedicated space in the shared memory region where they can write their values. Make the parent
process print out all the values that were written to the shared memory by the child processes.

4.2 CPU Affinity

In multi-core/multi-processor systems, processes/thread can run on different CPUs. Linux knows hard
and soft CPU affinity. Under normal circumstances, soft affinity is used. I.e., processes can run on any
available CPU/core, and migrate between CPUs to balance load. Hard affinity can be set explicitly,
again by using system calls to ask the operating system’s scheduler to run the process on the specified
(set) of CPU(s) only. The use of hard affinity is illustrated below.

#define _GNU_SOURCE
#include <sched.h>

int main() {
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(4, &cpuset); // run on the 5th core (starts at 0)
CPU_SET(5, &cpuset); // add core 6
sched_setaffinity(getpid(), sizeof(cpu_set_t), &cpuset);

}

Task 10

Modify your code from task 5 to run on one single CPU/core/logical core (choose one of the 8 cores
at random to prevent all of you working on one individual core) by setting hard CPU affinity. Rerun
the code, and generate a data file containing the process times. Generate a visualisation that shows
when processes are running (e.g. using excel). You should recognise the characteristics of the Linux
scheduler that were discussed during the lectures. As always, make sure that the parent process waits
for the child processes to finish.

12

4.3 Process Priority

As a student user (but also for most members of staff) on the school’s servers, there are few ways in
which you can manipulate processes and process priorities. E.g., you are not able to specify higher
than usual priorities for your processes, nor can you change the type of process from the “normal class”
to, e.g., the real time class. However, to investigate the influence of process priority on scheduling, it
is sufficient to create different process priorities by lowering the priority of some of them. Lowering
process priorities is a “one-way street” (on the school’s servers): once you have reduced the priority of
one of your processes, you cannot increase it again at a later point in time. Even the child processes
inherit the parent’s priority values. The restrictions on setting process priorities prevents regular users
from creating CPU-hogging processes that overtake all the existing ones.

Setting process priorities can be achieved by the setpriority() system call, as illustrated below.
More information on the setpriority() call can be found here: http://linux.die.net/man/2/setpriority.

#include <sys/resource.h>

int main() {
// Sets the priority of the current process
setpriority(PRIO_PROCESS, getpid(), 19);

}

Task 11

Using your code from the previous task (with all processes running on a single CPU), modify the
process priorities to be 0, +5, +10, and +15 (i.e. 4 processes). Re-run your code and analyse the
results using the principles discussed during the lectures.

Task 12 (Optional)

Once the above code is working, modify your program to generate one single visualisation the CPU
timings for the child processes in scalable vector format. Note that scalable vector graphics is an
XML/HTML like format that can be used to draw scalable shapes by writing simple files. This is often
a much easier approach to generating visualisations or graphs compared to generating bitmap files, and
in this case allows more detailed analysis of the process times compared to graphs generated in, e.g.,
Excel. A simple example can be found here: https://www.w3schools.com/graphics/svg rect.asp. Save
the generated SVG/HTML code as an HTML file. This will allow you to open it in regular browsers
which recognise and display SVG images (Internet Explorer, Google Chrome, and Firefox all recognise
SVG, however Firefox seems to be the slowest)

Now rerun the code above for 4 processes (anything between 1000 and 10000 milliseconds should
provide sufficient data):

� Without CPU affinity and equal priorities (name the generated file timings1.html)

� With CPU affinity and equal priorities (name the generated file timings2.html)

� With CPU affinity and non-equal priorities (name the generated file timings3.html)

Observe the scheduling behaviour and link it with the principles discussed during the lectures. Explain
whether the scheduling of your processes is pre-emptive or non-preemptive, whether you think that
starvation could occur, and if not, how it is prevented. Do you recognise any of the more basic
scheduling algorithms discussed during the lectures (e.g. round robin, priority queues), and if not,
explain how you believe the scheduling of your processes occurs. Repeat the above experiments for 15
processes.

13

http://linux.die.net/man/2/setpriority
https://www.w3schools.com/graphics/svg_rect.asp

5 File Systems

5.1 Core Operations

Most of the I/O operations in Linux can be performed using only five functions: open, read, write,
lseek, and close. The functions described here are often referred to as unbuffered I/O, which means
that each read or write invokes a system call in the kernel.

To the kernel, all open files are referred to by file descriptors. A file descriptor is a non-negative
integer. When we open an existing file or create a new file, the kernel returns a file descriptor to the
process. When we want to read or write a file, we identify the file with the file descriptor that was
returned by open or create as an argument to either read or write.

POSIX-compliant applications use symbolic constants STDIN_FILENO, STDOUT_FILENO, and STDERR_
FILENO to refer to the standard input of a process, the standard output, and the standard error,
respectively. These constants are defined in the <unistd.h> header.

Familiarise yourself with these five operations using the man pages. Then, run the following program
and check the resulting output. Use od -c outputFile.dat to look at the contents of the file as
characters.

#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<stdio.h>
#include<unistd.h>
#include<errno.h>
#include<stdlib.h>

char buf1[] = "abcdefghij";
char buf2[] = "ABCDEFGHIJ";
int main(void) {

int fd;
if((fd = open("archivo",O_CREAT|O_TRUNC|O_WRONLY,S_IRUSR|S_IWUSR)) <
0) {
printf("\nError %d to open",errno);
exit(-1);

}
if(write(fd,buf1,10) != 10) {
perror("\nError in first write");

exit(-1);
}
if(lseek(fd, 16384,SEEK_SET) < 0) {
perror("\nError in lseek");
exit(-1);

}
if(write(fd,buf2,10) != 10) {
perror("\nError in second write");
exit(-1);

}
return 0;

}

14

Note that with lseek, the file’s offset can be greater than the file’s current size, in which case the
next write to the file will extend the file. This is referred to as creating a hole in a file and is allowed.
Any bytes in a file that have not been written are read back as 0.

A hole in a file isn’t required to have storage backing it on disk. Depending on the file system
implementation, when you write after seeking past the end of the file, new disk blocks might be
allocated to store the data, but there is no need to allocate disk blocks for the data between the old
end of file and the location where you start writing.

To prove that there is really a hole in the file, let’s compare the file created with a file of the same size,
but without holes:

$ ls -ls outFile2.dat
20 -rw-rw-r--. 1 pszit pszit 16394 Sep 15 15:44 outFile2.dat

$ cat outputFile.dat > outputFile2.dat

$ ls -ls out*
20 -rw-rw-r--. 1 pszit pszit 16394 Sep 15 15:48 outputFile2.dat
8 -rw-------. 1 pszit pszit 16394 Sep 15 15:43 outputFile.dat

Why both files are the same size? How many disk blocks have these files and why? According to this,
what is the block size of our Operating System?

Task 13

Starting from the code above, write a program that takes as argument a pathname of a file, opens the
corresponding file and using a fixed block size of 80 bytes and creates an output file that looks like
this:

Block 1
// First 80 Bytes
Block 2
// Next 80 Bytes.

Next, modify this program to include an extra line indicating the number of blocks at the beginning
of the program. So, it should looks like:

The number of block is:

Block 1
// First 80 Bytes
Block 2
// Next 80 Bytes.

File attributes and types

Given a pathname, the stat function returns a structure of information about the named file. The
fstat function obtains information about the file that is already open on the descriptor filedes.
The lstat function is similar to stat, but when the named file is a symbolic link,
\lstinline[style=verbatim,breaklines]{lstat returns information about the symbolic

link, not the file referenced by the symbolic link.

The function fills a structure that looks like this:

15

struct stat {
mode_t st_mode; /* file type & mode (permissions) */
ino_t st_ino; /* i-node number (serial number) */
dev_t st_dev; /* device number (file system) */
dev_t st_rdev; /* device number for special files */
nlink_t st_nlink; /* number of links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner*/
off_t st_size; /* size in bytes, for regular files */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last filestatus change */
blksize_t st_blksize; /* best I/O block size */
blkcnt_t st_blocks; /* number of disk blocks allocated */

};

The biggest user of the stat functions is probably the ls -l command, to learn all the information
about a file. Multiple functions may be used to identify file types, check the following code and
understand its behavior.

#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<stdio.h>
#include<unistd.h>
#include<errno.h>
#include<stdlib.h>

int main(int argc, char *argv[]) {
int i;
struct stat buf;
char *ptr;

for (i = 1; i < argc; i++) {
printf("%s: ", argv[i]);
if (lstat(argv[i], &buf) < 0) {
printf("\nlstat error");

continue;
}
if (S_ISREG(buf.st_mode))

ptr = "regular";
else if (S_ISDIR(buf.st_mode))

ptr = "directory";
else if (S_ISCHR(buf.st_mode))

ptr = "character special";
else if (S_ISBLK(buf.st_mode))

ptr = "block special";
else if (S_ISFIFO(buf.st_mode))

ptr = "fifo";
else if (S_ISLNK(buf.st_mode))

16

ptr = "symbolic link";
else if (S_ISSOCK(buf.st_mode))

ptr = "socket";
else

ptr = "** unknown mode **";
printf("%s\n", ptr);

}
exit(0);

}

5.2 Links

A symbolic link is an indirect pointer to a file, unlike the hard links from the previous section, which
pointed directly to the i-node of the file. Symbolic links were introduced to get around the limitations
of hard links.

It is possible to introduce loops into the file system by using symbolic links. Consider the following
commands:

$ mkdir foo # make a new directory
$ touch foo/a # create a 0-length file
$ ln -s foo/ foo/testdir # create a symbolic link
$ ls -l foo

This creates a directory foo that contains the file a and a symbolic link that points to foo. A loop of
this form is easy to remove. We are able to unlink the file foo/testdir, as unlink does not follow
a symbolic link. But if we create a hard link that forms a loop of this type, its removal is much more
difficult. This is why the link function will not form a hard link to a directory unless the process has
superuser privileges.

Task 14

Create a simple program using the function ftw() (http://linux.die.net/man/3/ftw) to descend
through a file hierarchy, printing each pathname encountered. Run this program on the path cre-
ated with the loop. What output would you expect? What did you get?

5.3 Directories

Directories can be read by anyone who has access permission to read the directory. But only the kernel
can write to a directory, to preserve file system sanity. In <sys/types.h> and <dirent.h>, you
can find the most common function to work directories.

DIR *opendir(char *dirname)
struct dirent *readdir(DIR *dirp)
int closedir(DIR *dirp)
void seekdir(DIR *dirp, log loc)
long telldir(DIR *dirp)
void rewinddir(DIR *dirp)

Task 15

Using these functions, write a program that descend through a file hierarchy and count how many
regular file it finds in its way. For these files, the program will provide the i-node number. At the end
of the program the total size occupied by all the regular files has to be shown.

17

http://linux.die.net/man/3/ftw

	Goals
	Processes
	Creating Processes
	Overwriting Process Images
	Waiting for Processes
	Linux Process Scheduling

	Concurrency
	Race Conditions
	Mutexes
	Global Semaphores

	Memory
	Shared Memory
	CPU Affinity
	Process Priority

	File Systems
	Core Operations
	Links
	Directories

